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1 Introduction 
A strong understanding of calculating and interpreting percentage changes and growth rates is critically 
important for economists. This is because many fundamental concepts such as the time value of money, 
and many commonly reported economic measures, such as the rate of return on assets, price inflation, and 
measures of economic growth, require a firm understanding of percentage changes. Furthermore, 
economists tend to focus their economic analysis on relative changes of variables of interest rather than 
absolute changes. Arguably the most important measures in economics are elasticities, which come in 
many different varieties and represent the percentage change in one economic variable given a one-
percent change in another.  

This paper presents a brief primer on calculating and interpreting percentage changes and growth 
rates. The purpose is to illuminate these measures, facilitate their interpretation, and clarify their usage for 
economic analysis. Four alternative metrics of percentage change are discussed and compared using a 
simple numerical example. Some parsimonious suggestions are provided for preferring certain measures 
over others given the nature of the data series under investigation and the purpose of the analysis.  

 

2 Measures of Percentage Change  
The analysis of economic data often involves the need to calculate and interpret percentage changes. Some 
economic data are volatile with large fluctuations between data points, others are more smooth-trending 
with less variation. The alternative measures of percentage change discussed in this paper can differ 
substantially depending on the type of economic data series under investigation. 
2.1 Fundamental Formulas for Calculating a Percentage Change 

As a starting point consider three alternative methods of calculating a total percentage change in a 
data series, 𝑥0, 𝑥1, … , 𝑥𝑇 . The total percentage change from 𝑥0 to 𝑥𝑇  can be calculated on different bases as 
follows:  

 

Beginning Base: %∆𝑥𝐵 =
(𝑥𝑇−𝑥0)

𝑥0
      (1) 
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Average Base:  %∆𝑥𝐴 =
(𝑥𝑇−𝑥0)

0.5×(𝑥0+𝑥𝑇)
      (2) 

 

Natural Log Base: %∆𝑥𝐿 = ln (
𝑥𝑇

𝑥0
).      (3) 

 
Equation (1) uses the beginning period as the base, Equation (2) uses the average base of the 

beginning and ending periods, and Equation (3) uses the natural logarithm formula. Note that the average 
base of the beginning and ending periods is a discrete approximation to the continuous analog using 
natural logarithms, %∆𝑥𝐴 ≅ %∆𝑥𝐿. The approximation is good for small changes, but the metrics can be 
different for large percentage increases as shown in the numerical example that follows.  
2.2 Growth Rates 

Now consider the discrete compound interest formula that is familiar to economists, relating the 
present value to the future value of an asset, 𝑥. Let 𝑖 denote the discount rate obtained using discrete 
compounding.1 

 
𝑥𝑇 = 𝑥0(1 + 𝑖)𝑇      (4) 

 
Solving for i gives: 
 

𝑖 = [
𝑥𝑇

𝑥0
]

1

𝑇
− 1.       (5) 

 
We can use Equation (5) to calculate the annual average percentage change (growth rate) in the 

value of some asset over time. We can also use Equation (5) to calculate the rate of return to some 
investment opportunity, where 𝑥0 is the present value of the cash outflows, and 𝑥𝑇  is the future value of 
cash inflows. In this case, Equation (5) is called the modified internal rate of return (MIRR) of the 
investment, which was first introduced in the academic literature in the eighteenth century (Duvillard 
1781; Biondi 2006). The more commonly reported measure of the rate of return in the economics literature 
is the internal rate of return (IRR). Typically, a closed analytical solution does not exist for calculating a 
conventional IRR (when cash inflows and outflows occur over numerous periods), and numerical methods 
like interpolation must be used to derive a solution.   

The preference of reporting an IRR or a MIRR depends on the application. With an IRR, all of the 
cash inflows generated over the lifetime of a project are assumed to be reinvested in the project under 
analysis, which is probably a reasonable assumption when evaluating a targeted investment for a private 
company. By contrast, the MIRR allows for the incorporation of both an assumed cost-of-debt capital to 
calculate the present value of cash outflows (𝑥0 in Equation 5), as well as a potentially alternative 
reinvestment rate to calculate the future value of cash inflows (𝑥𝑇  in Equation 5). The MIRR is probably 
more appropriate for evaluating things like public investments in research and development (R&D), which 
have a cost-of-debt capital that can be pegged to the return on government bonds, and a reinvestment rate 
that represents a market rate of return.2 

                                                        
1 Denote the value of an asset at time zero 𝑥0. At discount rate, i, the value of the asset at the end of the first period is, 𝑥0 + 𝑥0𝑖 =
𝑥0(1 + 𝑖). The value at the end of the second period is, 𝑥0(1 + 𝑖) + 𝑥0(1 + 𝑖)𝑖 = 𝑥0(1 + 𝑖)2. The value at the end of period T is, 

𝑥0(1 + 𝑖)𝑇. 

 
2 There was a recent debate in the agricultural economics literature about the best method to evaluate the economic rate of return to 

public investments in agricultural R&D. Traditionally, most studies reported an IRR (Alston et al. 2000); however, Alston et al. (2011) 

and Hurley et al. (2014) argued that the MIRR is a superior measure for evaluating public investments in agricultural R&D. In a comment 

to the Hurley et al. (2014) paper, Oehmke (2017) made the case that the IRR is still the preferred measure. Hurley et al. (2017) responded 

that the MIRR is the superior measure for evaluating public expenditures on R&D. 
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 Next consider the continuously compounded interest formula using the discount rate, 𝑟, and the 
base of the natural logarithms the mathematical constant, 𝑒, 
 

𝑥𝑇 = 𝑥0𝑒𝑟𝑇       (6) 
 
Solving for r gives: 
 

𝑟 =
ln[

𝑥𝑇
𝑥0

]

𝑇
.       (7) 

 
The continuously compounded discount rate is %∆𝑥𝐿 divided by the total number of periods minus 

one (or data points minus one). We can use Equation (7) to calculate the annual average percentage change 
in 𝑥𝑡. We can also set the discrete compound interest formula equal to the continuously compounded 
interest formula to solve for the relationship between the discount rates, 

 
(1 + 𝑖)𝑇 = 𝑒𝑟𝑇      (8) 

 
𝑖 = 𝑒𝑟 − 1.       (9) 

 
Equation (9) is the commonly used formula for calculating the discrete equivalent to a continuously 

compounded discount rate. Equations (5) and (7) show that the annual average percentage change in a 
data series is totally dependent on the choice of endpoints. We denote these the endpoint metrics of 
percentage change. This is not the case in the calculation of growth rates using regression analysis as in the 
next section, where all of the data points affect the estimated growth rate. 
2.3 Trend Analysis 
Consider the following specification of the population regression line, where the natural log of the 
dependent variable 𝑥𝑡 is a linear function of a trend variable, t, and a random error term, 𝑢𝑡 , 
 

ln 𝑥𝑡 = 𝛼 + 𝛽𝑡 + 𝑢𝑡 .      (10) 
 

The random error terms are independent and identically distributed random variables that follow 
the normal distribution with conditional expectation equal to zero and constant variance, 𝑢𝑡~𝑁[0, 𝜎2]. The 
first-order partial derivative of ln 𝑥𝑡  with respect to the time variable represents the growth rate of 𝑥𝑡,  

 
𝜕 ln 𝑥

𝜕𝑡
= 𝛽.       (11) 

 
The ordinary least squares (OLS) point estimator of the population parameter 𝛽 is an estimate of 

the growth rate of 𝑥𝑡 and can be compared with an annual average percentage change as described in the 
previous section. The regression estimate uses all the data points in contrast to the endpoint metrics of 
percentage change. Any large outliers in the data or substantial volatility in the underlying data series can 
cause large differences in these measures.3  

 

3 Numerical Example 
A simple numerical example is presented to illustrate the concepts covered in the previous section. Table 
1 shows two hypothetical data series used in the analysis that follows and the natural logarithms of each 
series. The endpoints for Data Series (1) and Data Series (2) are the same: x = 10 at t = 1, and x = 16 at t =  

                                                        
3 In the case of the trend regression, additional estimation problems such as autocorrelation may be present that can bias the estimated 

growth rate. 
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10. Data Series (1) is a relatively volatile series with large annual fluctuations, and Data Series (2) is a 
relatively smooth-trending series except for a single large outlier (large decrease in year 8).  
 Figure 1 shows each of the hypothetical data series, the natural log of each series, and a linear trend 
added to the natural log series. The figure also includes the estimated linear trend equation and the 
corresponding R2 for each data series.  
 The results from an OLS regression of ln 𝑥𝑡 on a time trend using Data Series (1) are presented below 
in Equation (12), 
 

ln 𝑥𝑡 = 2.2642 +  0.0690𝑡  T = 10     (12) 
            (0.1164)     (0.0188)                 (𝑠. 𝑒. )  

The standard errors are in parentheses. The R2 = 0.6283, and the estimated growth rate �̂� = 0.0690 is 

statistically significantly different from zero at the 1-percent level of significance. Note that �̂� represents a 
continuously compounded discount rate analogous to the previously defined, r, and Equation (9) can be 
used to convert to a discrete discount rate, i, if this is preferred. In the current application, the equivalent 
rate under discrete compounding is i = 0.0714 or 7.14 percent per period.  

Table 2 shows the total percentage change and the growth rate for each metric using Data Series  
 

  

Table 1. Two Hypothetical Data Series and 
Natural Logs 

Data series (1)   Data series (2) 
t x ln x   t x ln x 

1 10 2.30  1 10 2.30 

2 13 2.56  2 11 2.40 

3 9 2.20  3 11 2.40 

4 15 2.71  4 12 2.48 

5 12 2.48  5 11 2.40 

6 16 2.77  6 13 2.56 

7 15 2.71  7 14 2.64 

8 17 2.83  8 10 2.30 

9 22 3.09  9 15 2.71 

10 16 2.77   10 16 2.77 

 

Table 2: Percentage Changes and Growth Rates for Alternative Metrics for Data Series (1) 

Panel (a): Endpoint t = 10     Panel (b): Endpoint t = 9   

Metric Total 
Annual-
average 

 Metric Total 
Annual-
average 

Beginning base 60.00 6.67  Beginning base 120.00 15.00 

Average base 46.15 5.13  Average base 75.00 9.38 

Natural log 47.00 5.22  Natural log 78.85 9.86 

Regression 62.10 6.90   Regression 67.28 8.41 

Note: The beginning, average, and natural log estimates are from Equations (1), (2), and (3). The regression 

estimates are from Equation (10). The point estimates of total percent change = �̂� × (𝑡 − 1).  
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(1) and two different endpoints for the analysis, t = 9 and t = 10. The first three rows of each panel in Table 
2 show the calculated percentage changes using Equations (1), (2), and (3), and their corresponding 
growth rates.  

 
(a) Data Series 1 and Linear Trend 
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(b) Data Series 2 and Linear Trend 
 
Figure 1. Hypothetical Data with Linear Trend for 
Natural Log Series  
 
Note: The figures include the linear trend equation and the R2. The 
estimated growth rate from the linear trend regression in Data Series (1) 
is 6.90 percent, which is statistically significantly different from zero at 
the 1-percent level of significance. In Data Series (2), the estimated 
growth rate is 3.97 percent, which is statistically significantly different 
from zero at the 5-percent level of significance. 
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The final row of each panel is the point estimator of the growth rate from Equation (10). In Table 2 
Panel (a), when t = 10, the three endpoint metrics of the growth rate range from 5.13 to 6.67 percent. In 
Panel (b), when t = 9, the endpoint metrics range from 9.38 to 15.00 percent. This is an example of the 
sensitivity of standard measures of percentage change to the choice of endpoint, and the potential for 
“cherry-picking” a desired result. Also note that the discrete approximation to the natural log formula is 
accurate for modest increases in the data series 𝑥𝑡 as in Panel (a), but the two measures diverge for large 
increases as in Panel (b). If we report the regression estimates of the growth rate for both endpoints (t = 9 
and t =10), which use all of the data, the estimate does not change as drastically falling from 8.41 to 6.90 
percent. This is a case where the regression estimate of the growth rate has a clear advantage over the 
alternatives. When working with volatile data series, the choice of the range of data under analysis is 
critically important, especially when using metrics that depend solely on the endpoints to calculate the 
growth rate.  
  Next, we turn to hypothetical Data Series (2) in Table 1 and Figure 1, to illustrate the effects of a 
substantial outlier in the data series. Recall the endpoints of each of the Data Series (1) and (2) are the 
same, x = 10 at t = 0 and x = 16 at t = 10; therefore, the first three metrics of the percentage change and the 
growth rate (the beginning period base, average base, and natural log) are the same as in Table 2 Panel (a). 
Only the regression estimate of the growth rate differs between the two data series. In Data Series (1), the 
point estimate of the growth rate is 6.90 percent, and in Data Series (2) the estimate falls to 3.97 percent. 
The large single outlier in Data Series (2) caused a dramatic reduction in the point estimate of the growth 
rate. The regression estimate of the growth rate is sensitive to large outliers in the data, and this is an 
important cautionary note when using and interpreting these measures.  

To summarize, be cautious when reporting standard measures of percentage change such as those 
calculated using the beginning period base or the natural logarithm formula when the choice of endpoints 
is important. This is especially true when analyzing data series that vary significantly from year to year as 
in hypothetical Data Series (1). In this case, a regression estimate is likely the optimal option. Conversely, 
if the data series is mostly smooth-trending, but has a significant outlier like in Data Series (2), a regression 
estimate of the growth rate will be substantially impacted.4 In this case the standard measures are superior. 
These results should serve as a cautionary tale about the importance of understanding measures of 
percentage change, and in particular which method was used to construct the measures. 
 

4 Conclusion 
Important economic measures such as inflation rates, elasticities, the rate of return on assets, and interest 
rates, represent the percentage change of some underlying economic data series. Are the measures total 
percentage changes, annual averages, or regression estimates, and which method was used to calculate 
them? Do the metrics represent continuous compounding or discrete compounding? As an economic 
practitioner, the author suggests the natural log formula (Equation 3) to calculate a total percentage 
change, as well as an estimate of the annual average after dividing by the number of periods minus one; 
however, in addition, a regression estimate of the growth rate is sometimes obtained. The difference 
between the annual average and the regression estimate of the growth rate will be large when the data are 
volatile or there are significant outliers in the data. A good rule of thumb is to use a standard measure of 
percentage change like a natural log formula when the data series under analysis is relatively smooth-
trending, the data series has a large outlier, or the choice of endpoints is not of particular importance. The 
regression estimate of the growth rate is superior when the data are volatile and the choice of endpoints is 
important to the analysis.  
 

                                                        
4 It is also possible to use a dummy variable for a large outlier year if there is a justification.  
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